

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Use of High-Resolution Mass Spectrometry to Identify Products from Microwave Discharges in COAL-D₂O Mixtures

T. Kessler^a; A. G. Sharkey Jr.^a

^a U.S. Department of the Interior, Bureau of Mines Pittsburgh Coal Research Center, Pittsburgh, Pa

To cite this Article Kessler, T. and Sharkey Jr., A. G.(1968) 'Use of High-Resolution Mass Spectrometry to Identify Products from Microwave Discharges in COAL-D₂O Mixtures', *Spectroscopy Letters*, 1: 4, 177 — 180

To link to this Article: DOI: 10.1080/00387016808049959

URL: <http://dx.doi.org/10.1080/00387016808049959>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

USE OF HIGH-RESOLUTION MASS SPECTROMETRY TO IDENTIFY PRODUCTS
FROM MICROWAVE DISCHARGES IN COAL-D₂O MIXTURES

T. Kessler and A. G. Sharkey, Jr.

U.S. Department of the Interior, Bureau of Mines
Pittsburgh Coal Research Center, Pittsburgh, Pa. 15213

Reactions of carbonaceous materials and H₂O in microwave discharges are known to produce H₂, HCN, CO, CO₂, and light hydrocarbon gases (primarily C₁ and C₂) in varying amounts. To determine if the solid or the H₂O is the source of hydrogen in formation of the above products, Fu and Blaustein reacted coal and graphite with D₂O.¹ Low-resolution mass spectra of the gaseous products from the D₂O experiments indicated the possibility of non-deuterated and corresponding deuterated compounds in the reaction mixture. Conventional separation and analytical techniques are not applicable to mixtures of this type. This communication describes the use of a high-resolution mass spectrometer, operated at a resolution 35 percent less than theoretically required for separation of the H₂-D doublet, to electrically measure precise masses for mixtures containing micromole amounts of deuterated and non-deuterated light gases.

As the H₂-D doublet is separated by only 0.0015 atomic mass units (amu), a resolution of approximately 20,000 is required for separation of even the C₂ deuterated and non-deuterated hydrocarbons. (Resolution is defined as a 10 percent valley between 2 adjacent mass peaks of equal intensity.) At this resolution the sensitivity of the mass spectrometer is quite low. Precise masses of minor components present in mixtures often cannot be determined using a Nier peak matcher. Although computational methods have been

T. KESSLER AND A. G. SHARKEY, JR.

described in the literature to locate peak centers and separate overlapping lines from photoplate data,² such techniques are not applicable to the Nier peak matching system used in many laboratories.³ If accurate mass measurements could be made with more than a 10 percent valley between 2 adjacent masses having different intensities, the instrument resolution could be decreased with a resulting gain in the ion intensity of the mass spectrum of the mixture.

A Consolidated Electrodynamics Corporation model 21-110B high-resolution mass spectrometer was used for this investigation.⁴ Precise mass measurements were made using a Nier peak matcher.

To determine if accurate measurements could be made directly at a resolution less than the 20,000 required for the separation of the H₂-D doublet in the C₂ hydrocarbon range, mass measurements were made with the instrument adjusted to produce various degrees of resolution for a known doublet of different ion intensities. The doublet, C₇H₈⁺-C₆¹²C¹³H₇⁺ at m/e 92, present in a toluene-xylene mixture, requires a resolution of 1/20,000 for complete separation as defined above. Results of mass measurements and ion intensities observed with the instrument adjusted to produce valleys of 10 and 75 percent, respectively, are as follows:

Resolution	Valley Pct.	Relative ion intensity		Deviations from theoretical mass (amu)	
		C ₆ ¹² C ¹³ H ₇ ⁺	C ₇ H ₈	C ₆ ¹² C ¹³ H ₇ ⁺	C ₇ H ₈ ⁺
1/20,000	10	18	210	0.0000	-0.0002
1/13,000	75	90	1,200	+0.0001	-0.0001

These results demonstrate that a decrease in resolution of 35 percent produces a 5- to 6-fold increase in ion intensity with no loss in accuracy of

USE OF HIGH-RESOLUTION MASS SPECTROMETRY

mass measurement even though the ratio of intensities of the two ions is about 12 to 1.

Table 1 shows the multiplets detected at masses 14-28 in the gases resulting from the reaction of coal and D₂O in a microwave discharge. The presence of CH₄, CDH₃, CD₂H₂, CD₃H, H₂O, HDO, D₂O, C₂H₂, C₂DH, C₂D₂, HCN, CO, and N₂ was established in this mixture. With only two exceptions (CO and N₂) agreement between measured and theoretical masses was better than 1 millimass unit.

REFERENCES

1. Y. C. Fu and B. D. Blaustein, Chem. and Ind., 1257 (1967).
2. R. Venkataraghavan, F. W. McLafferty, J. W. Amy, Anal. Chem., 39, 178 (1967).
3. K. S. Quisenberry, T. T. Scolman, and A. O. Nier, Phys. Rev., 102, 1071 (1956).
4. Reference to specific makes or models of equipment is made to facilitate understanding and does not imply endorsement of such brands by the Bureau of Mines.

T. KESSLER AND A. G. SHARKEY, JR.

TABLE 1
Microwave Discharge Reaction Products from Coal-D₂O (resolution 1/13,000)

	Nominal mass	Measured mass	Actual mass	Δ amu	Empirical formula	Nominal mass	Measured mass	Actual mass	Δ amu	Empirical formula	
14	13.9974	13.9974	0	0.0000	C ₀ H ₄	19	19.0169	19.0168	+0.0001	HDO	
	14.0032	14.0031	+0.0001	N			19.0502	19.0501	+0.0001	CD ₃ H	
	14.0142	14.0141	+0.0001	CD			20	20.0232	20.0231	+0.0001	D ₂ O
	14.0158	14.0156	+0.0002	CH ₂			26	26.0026	26.0031	-0.0005	CN
15	15.0221	15.0219	+0.0002	CDH		26	26.0136	26.0141	-0.0005	C ₂ D	
	15.0236	15.0235	+0.0001	CH ₃			26.0154	26.0156	-0.0002	C ₂ H ₂	
16	15.9951	15.9949	+0.0002	O		27	27.0100	27.0109	-0.0009	HCN	
	16.0298	16.0297	+0.0001	CDH ₂			27.0227	27.0219	+0.0008	C ₂ DH	
	16.0313	16.0313	0	CH ₄							
	17	17.0028	17.0027	+0.0001	OH	28	27.9929	27.9949	-0.0020	CO	
	17.0362	17.0360	+0.0002	CD ₂ H			28.0041	28.0061	-0.0020	N ₂	
	17.0376	17.0376	0	CDH ₃			28.0273	28.0282	-0.0009	C ₂ D ₂	
18	18.0091	18.0090	+0.0001	OD							
	18.0106	18.0106	0	H ₂ O							
	18.0439	18.0438	+0.0001	CD ₂ H ₂							